首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64289篇
  免费   5537篇
  国内免费   4925篇
化学   30193篇
晶体学   854篇
力学   4516篇
综合类   592篇
数学   11064篇
物理学   27532篇
  2024年   80篇
  2023年   587篇
  2022年   997篇
  2021年   1395篇
  2020年   1673篇
  2019年   1657篇
  2018年   1544篇
  2017年   1847篇
  2016年   2202篇
  2015年   1831篇
  2014年   2617篇
  2013年   4848篇
  2012年   3197篇
  2011年   3584篇
  2010年   2815篇
  2009年   4028篇
  2008年   4149篇
  2007年   4590篇
  2006年   3834篇
  2005年   3084篇
  2004年   2631篇
  2003年   2759篇
  2002年   2685篇
  2001年   2174篇
  2000年   2003篇
  1999年   1648篇
  1998年   1602篇
  1997年   945篇
  1996年   907篇
  1995年   829篇
  1994年   903篇
  1993年   636篇
  1992年   710篇
  1991年   462篇
  1990年   435篇
  1989年   328篇
  1988年   304篇
  1987年   301篇
  1986年   260篇
  1985年   233篇
  1984年   246篇
  1983年   137篇
  1982年   200篇
  1981年   185篇
  1980年   115篇
  1979年   151篇
  1978年   109篇
  1977年   90篇
  1976年   43篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
采用基于密度泛函理论的平面波超软赝势方法对本征Zn2GeO4,Mn2+掺杂Zn2GeO4,Mn2+/N2-共掺杂Zn2GeO4超晶胞进行了几何结构优化,计算了掺杂前后体系的晶格常数、能带结构、态密度和光学性质。结果表明,Mn离子掺入后,Mn离子3d轨道与O离子2p轨道之间有强烈的轨道杂化效应,掺杂系统不稳定,而Mn/N离子共掺后,Mn离子和N离子之间的吸引作用克服了Mn离子之间的排斥作用,能够明显地提高掺杂浓度和体系的稳定性。光学性质计算结果表明,Mn离子与N离子共掺杂能改善Zn2GeO4电子在低能区的光学跃迁特性,增强电子在可见光区的光学跃迁;吸收谱计算结果显示,Mn离子与N离子掺入后体系对低频电磁波吸收增加。  相似文献   
52.
基于青海共和盆地-3705m地热田实测数据,结合流固耦合传热理论并运用Comsol软件,建立了离散型裂隙岩体流体传热模型。考虑水流损失和热补偿共同作用,模拟得到了开采过程中上、下岩层(盖层和垫层)为绝热不渗透、传热不渗透、渗透传热时,储层(上、下岩层和压裂层)温度场的变化特征,分析了产出流量、水流损失、产出温度、产热速率的变化规律。研究结果表明:采热过程中产出流量始终小于注入流量;产出流量增幅速率先增大后减小,最后趋于稳定,前3a产出流量增幅超过总增幅量的3/4;忽略水流损失,将高估产热速率,采热初期甚至达到考虑水流损失时产热速率的3倍以上;考虑水流损失,产热速率呈先快速上升再趋于稳定后逐渐下降的趋势,最优开采时间为3a^11a;研究上、下岩层对产出温度的影响,仅考虑传热,采热寿命延长5.43%,同时考虑渗流传热时,采热寿命延长2.71%;采热前9a,水流损失占主导作用,即流入上、下岩层水流损失对产热速率的影响高于热补偿效应,开采10a后,热补偿效应占主导作用;同时考虑水流损失和热补偿效应得到的产热速率变化规律与实际工程更为符合,建议选择低渗透能力的上、下岩层延长增强型地热系统(EGS)运行时间。  相似文献   
53.
We study the nonlinear stability of rarefaction waves to the Cauchy problem of a one-dimensional viscous radiative and reactive gas when the viscosity and heat conductivity coefficients depend on both density and absolute temperature. Our main idea is to use the smallness of the strength of the rarefaction waves to control the possible growth of its solutions induced by the nonlinearity of the system and the interactions of rarefaction waves from different families. The proof is based on some detailed analysis on uniform positive lower and upper bounds of the specific volume and the absolute temperature.  相似文献   
54.
Two yellow bis-azo dyes containing anthracene and two azodiphenylether groups (BPA and BTA) were prepared, and an extensive investigation of their physical, thermal and biological properties was carried out. The chemical structure was confirmed by the FTIR spectra, while from the UV–Vis spectra, the quantum efficiency of the laser fluorescence at the 476.5 nm was determined to be 0.33 (BPA) and 0.50 (BTA). The possible transitions between the energy levels of the electrons of the chemical elements were established, identifying the energies and the electronic configurations of the levels of transition. Both crystals are anisotropic, the optical phenomenon of double refraction of polarized light (birefringence) taking place. Images of maximum illumination and extinction were recorded when the crystals of the bis-azo compounds rotated by 90° each, which confirms their birefringence. A morphologic study of the thin films deposited onto glass surfaces was performed, proving the good adhesion of both dyes. By thermal analysis and calorimetry, the melting temperatures were determined (~224–225 °C for both of them), as well as their decomposition pathways and thermal effects (enthalpy variations during undergoing processes); thus, good thermal stability was exhibited. The interaction of the two compounds with collagen in the suede was studied, as well as their antioxidant activity, advocating for good chemical stability and potential to be safely used as coloring agents in the food industry.  相似文献   
55.
We consider the random‐cluster model (RCM) on with parameters p∈(0,1) and q ≥ 1. This is a generalization of the standard bond percolation (with edges open independently with probability p) which is biased by a factor q raised to the number of connected components. We study the well‐known Fortuin‐Kasteleyn (FK)‐dynamics on this model where the update at an edge depends on the global geometry of the system unlike the Glauber heat‐bath dynamics for spin systems, and prove that for all small enough p (depending on the dimension) and any q>1, the FK‐dynamics exhibits the cutoff phenomenon at with a window size , where λ is the large n limit of the spectral gap of the process. Our proof extends the information percolation framework of Lubetzky and Sly to the RCM and also relies on the arguments of Blanca and Sinclair who proved a sharp mixing time bound for the planar version. A key aspect of our proof is the analysis of the effect of a sequence of dependent (across time) Bernoulli percolations extracted from the graphical construction of the dynamics, on how information propagates.  相似文献   
56.
Two novel 2′-hydroxychalcone derivatives (i.e., M1 and M2) are explored in this work. We mainly focus on investigating the effects of photoexcitation on hydrogen bonds and on the excited-state intramolecular proton transfer (ESIPT) process. On the basis of calculations of electrostatic potential surface and intramolecular interactions, we verify the formation of hydrogen bond O1 H2···O3 in both S0 and S1 states. Exploring the ultraviolet–visible spectra in the liquid phase, our simulated results reappear in the experimental phenomenon. Analyzing molecular geometry and infrared stretching vibrational spectra, we confirm O1 H2···O3 is strengthened for both M1 and M2 in the S1 state. We further confirm that charge redistribution facilitates ESIPT tendency. Constructing potential energy curves, we find the ultrafast ESIPT behavior for M1, which is because of the deficiency of side hydroxyl moiety comparing with M2. This work makes a reasonable affiliation of the ESIPT mechanism for M1 and M2. We wish this paper could facilitate understanding these two novel systems and promote their applications.  相似文献   
57.
The development of organic electron acceptor materials is one of the key factors for realizing high-performance organic solar cells (OSCs). Nonfullerene electron acceptors, compared to traditional fullerene acceptor materials, have gained much impetus owing to their better optoelectronic tunabilities and lower cost, as well as higher stability. Therefore, 5 three-dimensional (3D) cross-shaped acceptor materials having a spirobifullerene core flanked with 2,1,3-benzothiadiazole are designed from a recently synthesized highly efficient acceptor molecule SF(BR) 4 and are investigated in detail with regard to their use as acceptor molecules in OSCs. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed for the estimation of frontier molecular orbital (FMO) analysis, density of states analysis, reorganization energies of electron and hole, dipole moment, open-circuit voltage, photo-physical characteristics, and transition density matrix analysis. In addition, the structure-property relationship is studied, and the influence of end-capped acceptor modifications on photovoltaic, photo-physical, and electronic properties of newly selected molecules ( H1-H5 ) is calculated and compared with reference ( R ) acceptor molecule SF(BR) 4 . The structural tailoring at terminals was found to effectively tune the FMO band gap, energy levels, absorption spectra, open-circuit voltage, reorganization energy, and binding energy value in selected molecules H1 to H5 . The 3D cross-shaped molecules H1 to H5 suppress the intermolecular aggregation in PTB7-Th blend, which leads to high efficiency of acceptor material H1 to H5 in OSCs. Consequently, better optoelectronic properties are achieved from designed molecules H1 to H5 . It is proposed that the conceptualized molecules are superior than highly efficient spirobifullerene core-based SF(BR) 4 acceptor molecules and, thus, are recommended to experiments for future developments of highly efficient solar cells.  相似文献   
58.
In the last decade,the functionally graded carbon nanotube reinforced composites(FG-CNTRCs)have attracted considerable interest due to their excellent mechanical properties,and the structures made of FG-CNTRCs have found broad potential applications in aerospace,civil and ocean engineering,automotive industry,and smart structures.Here we review the literature regarding the mechanical analysis of bulk CNTR nanocomposites and FG-CNTRC structures,aiming to provide a clear picture of the mechanical modeling and properties of FG-CNTRCs as well as their composite structures.The review is organized as follows:(1)a brief introduction to the functionally graded materials(FGM),CNTRCs and FG-CNTRCs;(2)a literature review of the mechanical modeling methodologies and properties of bulk CNTRCs;(3)a detailed discussion on the mechanical behaviors of FG-CNTRCs;and(4)conclusions together with a suggestion of future research trends.  相似文献   
59.
Using an operator ordering method for some commutative superposition operators, we introduce two new multi-variable special polynomials and their generating functions, and present some new operator identities and integral formulas involving the two special polynomials. Instead of calculating complicated partial differential, we use the special polynomials and their generating functions to concisely address the normalization, photocount distributions and Wigner distributions of several quantum states that can be realized physically, the results of which provide real convenience for further investigating the properties and applications of these states.  相似文献   
60.
ABSTRACT

The asymptotic homogenization method is applied to complex dielectric periodic composites. An equivalence to coupled dielectric problems with real coefficients is shown. This is similar to a piezoelectric problem: an out-plane mechanical displacement and an in-plane electric potential establishing a correspondence principle. Closed-form formulas for the complex dielectric effective tensor in the case of a square array of circular inclusions embedded in a matrix are given. These formulas are written in terms of a real and symmetric matrix which facilitates the implementation of the computational scheme. We also get similar formulas for multilayered complex dielectric composites. The real closed-form formulas are advantageous for estimating gain and loss enhancement properties of active and passive composites in certain volume fraction intervals. Numerical computations are performed and the results are compared with other approaches showing the usefulness of the obtained formulas. This may be of interest in the context of metamaterials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号